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Mark A. Cochrane and William F. Laurance

Synergisms among Fire, Land Use, and
Climate Change in the Amazon

The Amazon is being rapidly transformed by fire. Logging
and forest fragmentation sharply elevate fire incidence by
increasing forest desiccation and fuel loads, and forests
that have experienced a low-intensity surface fire are
vulnerable to far more catastrophic fires. Satellites
typically detect thermal signatures from 40 000 to
50 000 separate fires in the Amazon each year, and this
number could increase as new highways and infrastruc-
ture expand across the basin. Many are concerned that
large-scale deforestation, by reducing regional evapo-
transpiration and creating moisture-trapping smoke
plumes, will make the basin increasingly vulnerable to
fire. The Amazon may also be affected by future global
warming and atmospheric changes, although much
remains uncertain. Most models suggest the basin will
become warmer throughout this century, although there
is no consensus about how precipitation will be affected.
The most alarming scenarios project a permanent
disruption of the El Niño–Southern Oscillation, leading
to greatly increased drought or destructive synergisms
between regional and global climate change in the
Amazon.

INTRODUCTION

Fire is one of the most potent of all forces in structuring natural
ecosystems, and it influences myriad aspects of biological
communities and their abiotic environments. When an ecosys-
tem such as a tropical rain forest is burned, the effects can be
spectacularly destructive or transformative (1–4). Here, we
describe how human activities are radically altering the fire
dynamic in tropical forests, with particular emphasis on the
Amazon.

The natural fire regimes of different biomes are often
relatively distinctive. Such regimes include the intensity and
size of fires, their frequency and duration, and their timing with
respect to seasonality. Alteration of one or any combination of
these factors changes the fire regime, and if this exceeds the
resistance or resilience capacity of the ecosystem, then the
resulting changes can be dramatic (5). Vegetation and fire
regimes interact in a dynamic manner, and each influences the
other.

In the Amazon, as elsewhere in the tropics, human activities
are altering fire regimes in fundamental ways. Ignition sources
increase drastically in human-altered landscapes. Land-use
changes, such as logging and forest fragmentation, increase
fuel loads, desiccation, and forest flammability. Finally, climatic
changes resulting from anthropogenic activities at local (6–9),
regional (10–13), and possibly global scales (14) could increase
the likelihood of fire. These changes may interact additively or
synergistically, reinforcing one another in dangerous positive
feedbacks (15, 16).

IGNITION SOURCES

Since the early 1970s, fire incidence has soared in the Amazon.
This increase has closely paralleled concerted efforts to open up

the Amazon frontier for forest-colonization projects, large-scale
agriculture, industrial logging, and urban development. Major
highway, road, and infrastructure projects have crisscrossed the
basin and continue to proliferate (17–19), facilitating a large
influx of immigrants. As a result of such activities, the
population of Brazilian Amazonia increased approximately
tenfold, from 2 to 20 million, from the early 1960s to 2000 (20).

Along the expanding road network, fire is the primary tool
used to clear forest and maintain wide expanses of pastures and
farmlands. Nearly 20% of the Brazilian Amazon has been
cleared in the last several decades (21), with more than 2 million
ha of forest being felled and burned annually in many years
(22). Moreover, another 20 million ha of previously cleared
lands are intentionally burned each year (23) to maintain
pastures and remove secondary vegetation (24). Satellites
typically detect thermal signatures of 40 000 to 50 000 separate
fires in the Amazon annually (25).

Fires in tropical forest landscapes such as the Amazon fall
into three main categories (3). First, deforestation fires, where
slashed vegetation is burned, create intense fires that burn for
several hours and then may smolder for days. Second,
maintenance fires, which consume charred vegetation remnants
from the initial deforestation fires, move rapidly as narrow fire
lines through grass and early second growth. Third, accidental
forest fires, which have escaped into standing forests, vary from
extremely low-intensity fires in previously undisturbed forests to
very intense fires in previously burned or logged forests.

LAND-USE CHANGES

Rapid alterations in land cover are also strongly affecting fire
dynamics in Amazonia. When free from disturbance, tropical
rain forests typically have high air and soil humidity, buffered
temperatures, and little light and wind in the forest understory
(26). These microclimatic conditions are ideal for decomposers
such as bacteria, fungi, and termites, which rapidly break down
leaf litter and fine wood debris (27) and thereby limit potential
fuels on the forest floor. When the forest canopy is intact, fuel
moisture remains high, even after several weeks without rain (1).
For these reasons, fires have been rare in Amazonian forests in
recent millennia (28), and major fires have been potentially
limited to megadroughts occurring perhaps once or twice every
thousand years (29).

Fires mostly occur in forests where the canopy is damaged.
Greater canopy openness elevates solar heating and air flow,
which rapidly dries leaf litter and other surface fuels (3, 23, 30,
31). Here, we highlight some key land-use changes, including
forest fragmentation, logging, and prior burning, that degrade
Amazonian forests and thereby predispose them to fire.

Forest Fragmentation

The rapid pace of Amazon deforestation is causing widespread
habitat fragmentation. By 1988, the area of forest that was
fragmented (,100 km2 in area) or vulnerable to edge effects (,1
km from clearings) was over 150% larger than the total area
deforested (32). In Brazilian Amazonia, nearly 20 000 km of
new forest edges are being created each year (33), and this figure
rises to 32 000 to 38 000 km per year if forest edges created by
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logging operations are included (34). At least one-third of the
Brazilian Amazon has now been altered by deforestation,
fragmentation, and edge effects (25), and by 2002, nearly half
(47%) of the region showed evidence of human activity (35).

Habitat fragmentation affects the ecology of Amazonian
forests in many ways, such as altering the diversity and
composition of fragment biota (36, 37) and changing ecological
processes like pollination and nutrient cycling (38, 39).
Fragmentation also alters rain forest dynamics, causing sharply
elevated rates of tree mortality, damage, and canopy-gap
formation (40), apparently as a result of elevated desiccation
(26), increased wind turbulence (41), and proliferating lianas
(42) near fragment edges. These changes lead to a substantial
loss of live biomass in fragments (43), and increased wood
debris (44) and leaf litter (45) near fragment margins.

Forest fragments are typically juxtaposed with cattle
pastures or slash-and-burn farming plots, which are regularly
burned. Destructive fires can readily penetrate into forest
fragments (31), especially during periodic El Niño droughts,
when desiccation-stressed trees lose many leaves and fuel loads
become particularly dry (16). Fire frequency is strongly linked
to the distance from forest edges (15), with edge-related fires
sometimes burning kilometers into the forest (Fig. 1) (46). The
relationship between forest burning and distance from forest
edges is nonlinear but quite striking, explaining up to 92% of
observed forest burning (47). Many forest fragments are also
selectively logged (48), and this further increases their vulner-
ability to fire.

Logging

Industrial logging is expanding rapidly in the Amazon, most
dramatically in the southern and eastern parts of the basin (49–
51). The amount of forest logged is comparable to that being
deforested each year. From 1999–2002, for example, from 1.2 to
2.0 million ha of forest were logged annually in the Brazilian
Amazon, equivalent to 60–123% of the forest area destroyed
each year (50).

Tropical logging is selective because just one to a few dozen
trees may be harvested per hectare of forest. Forest damage can
be substantial, however, because the bulldozers used during
logging operations create networks of forest roads, kill many

nonharvested trees, increase soil erosion and stream sedimen-
tation, and fragment the forest canopy (52, 53). As regional
timber markets develop, forests are often relogged several times
to harvest additional tree species. The damage to repeatedly
logged forests can be intense, with 40–50% of the canopy cover
destroyed (53).

Logging greatly increases the likelihood of forest fires (30,
54). Logging operations produce large quantities of dead,
flammable slash in the understory, while canopy damage allows
light and wind to penetrate to the understory and increase
desiccation. This results in intense fires (2) and high rates of fire
spread (47). Across the Brazilian Amazon, at least 76% of
logged forests had canopy damage severe enough to render the
forest highly vulnerable to droughts and fires (55).

In the Amazon, as in many tropical regions, industrial
logging is the first step toward large-scale forest destruction
(56). Logging creates an economic impetus for road building,
which in turn initiates a wave of spontaneous forest coloniza-
tion, hunting, and land speculation (25, 57, 58). Forest is
destroyed both purposefully by colonists and ranchers and
accidentally as fires leak into forests from nearby farmlands.
From 1999–2004, 16% of forest logged in Amazonia was
destroyed in the first year after logging, and 32% was destroyed
within 4 y of logging (55).

Positive Feedbacks in Fire Dynamics

Surface fires are emerging as an important threat to Amazonian
forests. Once initially damaged by a surface fire, closed-canopy
forests are far more vulnerable to subsequent fires. The initial
surface fire appears almost benign (Fig. 2). Except for treefall
gaps and other areas of unusual fuel structure, fires spread
slowly as narrow ribbons of flames a few tens of centimeters in
height (59). Little is consumed by the fire other than leaf litter.
Seedlings and small saplings suffer scorched foliage but canopy
trees appear relatively unscathed. The energy released in the fire
line is very low (50 kW m�1) (2), but its slow advance makes it
deadly to thin-barked tropical trees because it persists for many
seconds at the tree base (1). An initial fire kills ;40% of all trees
(.10 cm diameter) but only 10% of the standing biomass
because most large trees initially survive, although more die in
the following 2–3 y (2, 60).

Following the initial fire, canopy cover is reduced below
65%, and fuel loads rapidly increase as the dying vegetation
rains to the ground. Subsequent fires are far more severe if they
occur before forest recovery. In recurring fires, flame lengths,
flame depths, rates of spread, residence times, and fire-line
intensities are all far greater than in initial burns (2). Secondary
fires can kill 40% of the remaining stems, corresponding to 40%
of the live biomass, and in this case, large trees have no survival
advantage over smaller trees. Canopy cover is reduced sharply
to ,35%, and the forest dries quickly (2). Weedy vines and
grasses, some of which are quite flammable even when green,
quickly colonize twice-burned forests (31).

Burning greatly alters forest composition and structure.
Common tree species suffer the greatest mortality, but rare
species are most likely to be locally extirpated (31). Prospects
for species recovery are diminished because surface fires sharply
reduce seed availability in the litter and upper-soil layers (61),
while flowering and fruiting of trees in and near burned forests
decrease (62, 63). Such conditions strongly favor windborne,
light-demanding pioneer species. Within burned forests, un-
burned patches and gallery forests are key seed sources for
postfire recovery, but recurring fires quickly reduce the size and
number of unburned areas (31) and kill regenerating vegetation.
This further diminishes prospects for recovery of mature-forest
plant and animal species (64).

Figure 1. Dramatically elevated frequency of surface fires near forest
edges in eastern Amazonia (adapted from Cochrane and Laurance
[46]). Fire frequency (number per century) was estimated based on
12–14 y of satellite observations.
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Surface fires can create a dangerous positive feedback
whereby each successive fire becomes more likely (31) and
more severe because of higher fuel loads and fire intensities (2).
Such destabilizing dynamics are common in fragmented
landscapes where frequent burning in nearby pastures and
farms is a source of recurring ignition. Under such circum-
stances, the margins of forest fragments can literally ‘‘implode’’
over time, as forest margins collapse in response to a withering
recurrence of surface fires (46, 65).

CLIMATIC CHANGES

Local and Regional-scale Phenomena

Major changes in land cover could have important effects on
local and regional climates, which in turn may increase the
likelihood of forest fires. The loss and fragmentation of forest
cover can alter local and regional climates in several ways.

First, habitat fragmentation can promote forest desiccation
via a phenomenon known as the vegetation breeze (Fig. 3). This
occurs because fragmentation leads to the juxtaposition of
cleared and forested lands, which differ greatly in their physical
characteristics. Air above forests tends to be cooled by
evaporative cooling (from evapotranspiration of water vapor),
whereas such cooling is much reduced above clearings (this
increases the Bowen ratio, which is the ratio of sensible to latent

heat). As a result, the air over clearings heats up and rises,
reducing local air pressure and drawing moist air from
surrounding forests into the clearing. As the rising air cools,
the moisture it carries condenses into convective clouds that
may produce rainfall over the clearing. The air is then
recycled—as cool, dry air—back over the forest (6, 7).

The net effect of the vegetation breeze is that forest clearings
promote local atmospheric circulations that may increase
rainfall but, paradoxically, draw moist air away from nearby
rain forest (Fig. 3). In regions with prevailing winds, some rain
generated by the vegetation breeze may fall on downwind
forests, not just in clearings, and desiccation would be most
severe in upwind forests. In the Amazon, vegetation-breeze
effects have been observed in clearings as small as a few
hundred hectares, but these effects appear to peak when
clearings are roughly 100–150 km in diameter (8). The
vegetation breeze is essentially a large-scale edge effect; satellite
observations in Rondônia, Brazil, suggest that the desiccating
effects of major clearings can extend up to 20 km into adjoining
forests (9).

Second, the conversion of forests to pasture or savannah
reduces the rate of evapotranspiration because grass and shrubs
have far less leaf surface area than do forests (66). Declining
evapotranspiration could potentially decrease rainfall and cloud
cover and increase albedo and surface temperatures. Moisture
recycling via evapotranspiration is probably especially impor-
tant in the hydrological regime of the Amazon because it is both
vast and far from the ocean. However, the regional effects of
large-scale deforestation are far from fully understood. For
example, several modeling studies suggest that Amazonian
deforestation could reduce basinwide precipitation by roughly
20–30%, but these studies have relied on a simplistic assumption
of complete, uniform forest clearing (e.g., 67–69). Model results
based on actual (circa 1988) deforestation patterns in Brazilian
Amazonia have been less dramatic, with deforested regions
predicted to experience modest (6–8%) declines in rainfall,
moderate (18–33%) reductions in evapotranspiration, higher
surface temperatures, and greater wind speeds (from reduced
surface drag), which could affect moisture convergence and
circulation (10, 11). It is even possible that moderate forest loss
and fragmentation could increase net regional precipitation, as a
result of the vegetation breeze, although the main effect would
be to remove moisture from forests and redistribute it over
adjoining clearings. The greatest concern is that if deforestation
reaches some critical but unknown threshold, Amazonian
rainfall could decline abruptly as the regional hydrological
system collapses (12, 13).

Figure 2. Although slow-moving, surface fires have remarkably
destructive effects on rain forests. (Photo: M.A. Cochrane)

Figure 3. The vegetation-breeze phenomenon, which promotes
forest desiccation in the vicinity of pastures and clearings.
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Two further effects of forest loss are caused by the massive
smoke plumes (Fig. 4) produced by forest and pasture fires.
Smoke hypersaturates the atmosphere with cloud condensation
nuclei (microscopic particles in aerosol form) that bind with
airborne water molecules and thereby inhibit the formation of
raindrops (70). In addition, by absorbing solar radiation, smoke
plumes warm the atmosphere, inhibiting cloud formation. As a
result of these two phenomena, large fires can create rain
shadows that extend hundreds of kilometers downwind (71).
Moreover, because tropical fires are lit during the dry season,
both phenomena reduce rainfall during the critical dry-season
months, when plants are already moisture stressed and most
vulnerable to fire.

Global-scale Phenomena

Although much remains uncertain, the Amazonian climate is
also expected to be altered by global warming and atmospheric
changes. By 2100, global mean temperatures are projected to
rise by 1.8–4.08C, and the Amazon is likely to become warmer,
but more so in the west than east (72). Rainfall may decline;
some global circulation models (GCMs) predict moderate
reductions in precipitation (72), whereas other predictions are
much more severe (14). Further, excepting northwestern
Amazonia, the basin might experience longer intervals between
rainfall events (73). This is important because fire susceptibility
is more closely related to the amount of time since last rain than
to total rainfall (1, 31).

Some GCMs predict a truly dire future for the Amazon. The
most alarming, by Cox et al. (14), projects sharp (.98C)
temperature increases and a dramatic reduction (64%) in
basinwide rainfall, resulting in a large-scale dieback of forests
after 2050. By 2100, modeled conditions are so extreme that
over half of the Amazon is expected to become a virtual desert
(74). The driving force behind this model is the establishment of
a perpetual El Niño state in Amazonia. Under El Niño
conditions, much of the Amazon becomes hotter and drier.
Because up to 90% of Amazon forest burning occurs in El Niño
years (2, 75), any potential increases in El Niño frequency or
intensity could have grave implications for forests.

Other evidence, however, suggests that the projections by
Cox et al. (14, 74) are too pessimistic. A comparison of 20
different models of El Niño–Southern Oscillation (ENSO)
variability showed that most projected little or no change in

future ENSO conditions (76). Moreover, the models that
predicted the largest future changes (shifts to permanent El
Niño or La Niña states) were poorest at simulating historical
ENSO variability (76). In addition, the draconian projections of
Cox et al. seem at variance with known historical changes in the
Amazon. Despite considerable Pleistocene cooling and drying,
for instance, Amazonian forests were evidently more stable in
their geographic distribution than was previously thought (77,
78). Finally, regional circulation models (RCMs), which better
represent local topography, geographic features, and land-cover
changes than do GCMs (79), suggest that Amazonian
vegetation might be surprisingly resistant to climate change
(78, 80).

Hence, at present, it is exceedingly difficult to predict the
future impact of global warming on the Amazon, given the
great variation among different models, although most agree
that the southeast Amazon is at greatest risk of moderate to
severe reductions in dry-season rainfall (81). If projections of
broader-scale drying and warming trends should prove correct,
then large expanses of the Amazon could become more prone to
fire this century. This is especially so because forests in the
southern, eastern, and north-central parts of the basin are
already at or near the physiological limits of tropical rain forest
(82), and because forest-conversion pressure and fire incidence
are most intense in these drier and more seasonal areas (83).

CONCLUSIONS

A growing consensus among GCMs is that the Amazonian
climate will continue to warm this century (72). Warmer and
potentially drier conditions will make forests susceptible to
burning more frequently, and for longer periods, allowing
greater penetration of fires into forest remnants. So long as
agricultural land uses rely on fire as a land-clearing and
maintenance tool, ignition sources along forest edges will
always be present. Forest vulnerability will be greatly increased
by large-scale forest fragmentation (84) and logging, which are
being promoted by rapidly expanding highways and infrastruc-
ture (18). Because recycling of evapotranspiration is responsible
for 25–50% of Amazonian precipitation (85–87), regional
rainfall is likely to decline in concert with increasing defores-
tation. Moreover, although much is uncertain, a growing
concern is that regional and global climatic changes might
operate synergistically or in concert (88), exacerbating the
overall impact on forests. The nonlinear nature of many of the
processes that link fire occurrence to landscape and climate
changes makes modeling of fire and its effects a great challenge
in the Amazon. Unless fundamental changes occur in the way
human-dominated landscapes are managed, increasing expanses
of Amazonian forests will be subjected to fire regimes for which
they are not evolutionarily equipped to survive.

References and Notes

1. Uhl, C. and Kauffman, J.B. 1990. Deforestation, fire susceptibility, and potential tree
responses to fire in the eastern Amazon. Ecology 71, 437–449.

2. Cochrane, M.A., Alencar, A., Schulze, M.D., Souza, C. Jr., Nepstad, D., Lefebvre, P.
and Davidson, E. 1999. Positive feedbacks in the fire dynamic of closed canopy tropical
forests. Science 284, 1832–1835.

3. Cochrane, M.A. 2003. Fire science for rainforests. Nature 421, 913–919.
4. Barlow, J. and Peres, C.A. 2008. Fire-mediated dieback and compositional cascade in an

Amazonian forest. Philos. Trans. Roy. Soc. Lon. B 363, 1787–1794.
5. Holling, C.S. 1973. Resilience and stability of ecological systems. Ann. Rev. Ecol. Syst. 4,

1–23.
6. Silva Dias, P.L. and Regnier, P. 1996. Simulation of mesoscale circulations in a
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